Abstract

In this paper, we consider the problem of bounded reachability analysis of probabilistic hybrid systems which model discrete, continuous and probabilistic behaviors. The discrete and probabilistic dynamics are modeled using a finite state Markov decision process (MDP), and the continuous dynamics is incorporated by annotating the states of the MDP with differential equations/inclusions. We focus on polyhedral dynamical systems to model continuous dynamics. Our broad approach for computing probabilistic bounds on reachability consists of the computation of the exact minimum/maximum probability of reachability within k discrete steps in a polyhedral probabilistic hybrid system by reducing it to solving an optimization problem with satisfiability modulo theory (SMT) constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.