Abstract
In 1916, Schur introduced the Ramsey number r(3; m), which is the minimum integer n > 1 such that for any m-coloring of the edges of the complete graph Kn, there is a monochromatic copy of K3. He showed that r(3; m) ≤ O(m!), and a simple construction demonstrates that r(3; m) ≥ 2Ω(m). An old conjecture of Erdős states that r(3; m) = 2Θ(m). In this note, we prove the conjecture for m-colorings with bounded VC-dimension, that is, for m-colorings with the property that the set system induced by the neighborhoods of the vertices with respect to each color class has bounded VC-dimension.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have