Abstract

Let \[ ( T a ) ( y ) = ∑ n = 0 ∞ ( − y ) n g ( n ) ( y ) n ! a n , y ≥ 0 \left ( {Ta} \right )\left ( y \right ) = \sum \limits _{n = 0}^\infty {{{\left ( { - y} \right )}^n}} \frac {{{g^{\left ( n \right )}}\left ( y \right )}}{{n!}}{a_{n,\quad }}\quad y \geq 0 \] be the sequence-to-function Hausdorff transformation generated by the completely monotone function g g or, what is equivalent, the Laplace transform of a finite positive measure σ \sigma on [ 0 , ∞ ) [0,\infty ) . It is shown that for 1 ≤ p ≤ ∞ 1 \leq p \leq \infty , T T is a bounded transformation of l p {l^p} with weight Γ ( n + s + 1 ) / n ! \Gamma \left ( {n + s + 1} \right ) / n! into L p [ 0 , ∞ ) {L^p}[0,\infty ) with weight y s , s > − 1 {y^s},s > - 1 , whose norm ‖ T ‖ = ∫ 0 ∞ t − ( 1 + s ) / p d σ ( t ) = C ( p , s ) \left \| T \right \| = \int _0^\infty {{t^{ - \left ( {1 + s} \right ) / p}}} d\sigma \left ( t \right ) = C\left ( {p,s} \right ) if and only if C ( p , s ) > ∞ C\left ( {p,s} \right ) > \infty , and that for 1 > p > ∞ , ‖ T a ‖ p , s > C ( p , s ) ‖ a ‖ p , s 1 > p > \infty ,{\left \| {Ta} \right \|_{p,s}} > C\left ( {p,s} \right ){\left \| a \right \|_{p,s}} unless a n {a_n} is a null sequence. Furthermore, if 1 > p > r > ∞ , 0 > λ > 1 1 > p > r > \infty ,\,\;0 > \lambda > 1 and σ \sigma is absolutely continuous with derivatives ψ \psi such that the function ψ r ( t ) = t − 1 / r ψ ( t ) {\psi _r}\left ( t \right ) = {t^{ - 1 / r}}\psi \left ( t \right ) belongs to L 1 / λ [ 0 , ∞ ) {L^{1 / \lambda }}[0,\infty ) , then the transformation ( T λ a ) ( y ) = y 1 − λ ( T a ) ( y ) \left ( {{T_\lambda }a} \right )\left ( y \right ) = {y^{1 - \lambda }}\left ( {Ta} \right )\left ( y \right ) is bounded from l p {l^p} to L r [ 0 , ∞ ) {L^r}[0,\infty ) and has norm ‖ T λ ‖ ≤ ‖ ψ r ‖ 1 / λ \left \| {{T_\lambda }} \right \| \leq {\left \| {{\psi _r}} \right \|_{1 / \lambda }} . The transformation T T includes in particular the Borel transform and that of generalized Abel means. These results constitute an improved analogue of a theorem of Hardy concerning the discrete Hausdorff transformation on l p {l^p} which corresponds to a totally monotone sequence, and lead to improved forms of some inequalities of Hardy and Littlewood for power series and moment sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call