Abstract
We investigate probabilistic properties of random triangles in the space of finite sequences with the Hamming metrics. As a triangle is understood any triple of points with distances between them. Probability measure is given by the classical way. In particular, it is shown that randomly chosen triangle is approximately equilateral with high probability. We also introduce a quantity that characterizes degree of “equilaterality” of triangles in the metric space in average.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: p-Adic Numbers, Ultrametric Analysis and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.