Abstract

We recently reported a new molecular heterocyclic friction modifier (FM) that exhibits excellent friction and wear reduction in the boundary lubrication regime. This paper explores the mechanisms by which friction reduction occurs with heterocyclic alkyl-cyclen FM molecules. We find that these chelating molecules adsorb onto (oxidized) steel surfaces far more tenaciously than conventional FMs such as simple alkylamines. Molecular dynamics simulations argue that the surface coverage of our heterocyclic FM molecules remains close to 100% even at 200 °C. This thermal stability allows the FMs to firmly anchor to the surface, allowing the hydrocarbon chains of the molecules to interact and trap base oil lubricantmolecules. This results in thicker boundary film thickness compared with conventional FMs, as shown by optical interferometry measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.