Abstract
The problem of unsteady non – Newtonian flow past a vertical porous surface in the presence of thermal radiation is investigated. Using the theory of boundary layer analysis, the flow of micropolar fluid in the presence of exothermic and endothermic kind of chemical reaction is considered. It is assumed that the relationship between the flow rate and the pressure drop as the fluid flows over a porous medium is non – linear. Using local similarity transformation, the governing partial differential equations of the physical model are reduced to ordinary differential equations. The corresponding boundary value problem is solved numerically using shooting method along with Runge-Kutta Gill method together with quadratic interpolation. It is found that increase in micro-rotation parameter increases the velocity while the micro- rotation decreases across the flow region. Maximum micro-rotation of tiny particles is guaranteed at higher values of suction parameter. Local heat transfer rate decreases with an increase in exothermic /endothermic parameter.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have