Abstract

An initially uncharged ideally polarizable particle is freely suspended in an electrolyte solution in the vicinity of an uncharged dielectric wall. A uniform electric field is externally applied parallel to the wall, inflicting particle drift perpendicular to it. Assuming a thin Debye thickness, the electrokinetic flow is analysed for large particle–wall separations using reflection methods, thereby yielding an asymptotic approximation for the particle velocity. The leading-order correction term in that approximations stems from wall polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.