Abstract
Wang and Pötzelberger (1997) derived an explicit formula for the probability that a Brownian motion crosses a one-sided piecewise linear boundary and used this formula to approximate the boundary crossing probability for general nonlinear boundaries. The present paper gives a sharper asymptotic upper bound of the approximation error for the formula, and generalizes the results to two-sided boundaries. Numerical computations are easily carried out using the Monte Carlo simulation method. A rule is proposed for choosing optimal nodes for the approximating piecewise linear boundaries, so that the corresponding approximation errors of boundary crossing probabilities converge to zero at a rate of O(1/n2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.