Abstract

In this paper a globally stabilizing boundary feedback control law for an arbitrarily fine discretization of a nonlinear PDE model of a chemical tubular reactor is presented. The objective is to stabilize an unstable steady-state of the system using boundary control of temperature and concentration on the inlet side of the reactor. We discretize the original nonlinear PDE model in space using finite difference approximation and get a high order system of coupled nonlinear ODEs. Then, using backstepping design for parabolic PDEs we transform the original coupled system into two uncoupled target systems that are asymptotically stable in l2–norm with appropriate homogeneous boundary conditions. In the real system the designed control laws would be implemented through small variations of the prescribed inlet temperature and prescribed inlet concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.