Abstract

In this paper, a globally stabilizing boundary feedback control law for an arbitrarily fine discretization of a nonlinear PDE model of a chemical tubular reactor is presented. A model that assumes no radial velocity and concentration gradients in the reactor, the temperature gradient described by use of a proper value of the effective radial conductivity, a homogeneous reaction, the properties of the reaction mixture characterized by average values, the mechanism of axial mixing described by a single parameter model, and the kinetics of the first order is considered. Depending on the values of the nondimensional Peclet numbers, Damköhler number, the dimensionless adiabatic temperature rise, and the dimensionless activation energy, the coupled PDE equations for the temperature and concentration can have multiple equilibria that can be either stable or unstable. The objective is to stabilize an unstable steady state of the system using boundary control of temperature and concentration on the inlet side of the reactor. We discretize the original nonlinear PDE model in space using finite difference approximation and get a high order system of coupled nonlinear ODEs. Then, using backstepping design for parabolic PDEs we transform the original coupled system into two uncoupled target systems that are asymptotically stable in l 2-norm with appropriate homogeneous boundary conditions. In the real system, the designed control laws would be implemented through small variations of the prescribed inlet temperature and prescribed inlet concentration. The control design is accompanied by a simulation study that shows the feedback control law designed with sensing only on a very coarse grid (using just a few measurements of the temperature and concentration fields) can successfully stabilize the actual system for a variety of different simulation settings (on a fine grid).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.