Abstract

The diffusion approximation proves to be valid for light propagation in highly scattering media, but it breaks down in the presence of nonscattering regions. We present a compact expression of the boundary conditions for diffusive media with nonscattering regions, taking into account small-index mismatch. Results from an integral method based on the extinction theorem boundary condition are contrasted with both Monte Carlo and finite-element-method simulations, and a study of its limit of validity is presented. These procedures are illustrated by considering the case of the cerebro-spinal fluid in the brain, for which we demonstrate that for practical situations in light diffusion, these boundary conditions yield accurate results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call