Abstract

Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into account propagation of solution discontinuities along characteristics. An important property of schemes used in practice is their high order of accuracy, due to which signal wavefronts can be clearly resolved. Previously, much attention was given to this property at interior points of the computational domain. In this paper, we study the order of a scheme up to the boundary of the domain inclusive. An approach is proposed whereby arbitrary linear boundary and contact conditions can be set up to high accuracy. The presentation is given for the system of one-dimensional acoustic equations with constant coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.