Abstract

We theoretically studied the quasiparticle transport in a 2D electron gas biased in the quantum Hall regime and in the presence of a lateral potential barrier. The lateral junction hosts the specific magnetic field dependent quasiparticle states highly localized in the transverse direction. The quantum tunnelling across the barrier provides a complex bands structure of a one-dimensional energy spectrum of these bound states, , where py is the electron momentum in the longitudinal direction y. Such a spectrum manifests itself by a large number of peaks and drops in the dependence of the magnetic edge states transmission coefficient D(E ) on the electron energy E. E.g. the high value of D occurs as soon as the electron energy E reaches gaps in the spectrum. These peaks and drops of D(E) result in giant oscillations of the transverse conductance Gx with the magnetic field and/or the transport voltage. Our theoretical analysis, based on the coherent macroscopic quantum superposition of the bound states and the magnetic edge states propagating along the system boundaries, is in a good accord with the experimental observations found in Kang et al (2000 Lett. Nat. 403 59)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.