Abstract
We analyze bound states and other properties of solutions of a radial Schrödinger equation with a new screened Coulomb potential. In particular, we employ hypervirial relations to obtain eigen-energies for a Hydrogen atom with this potential. Additionally, we appeal to a sharp estimate for a modified Bessel function to estimate the ground state energy of such a system. Finally, when the angular quantum number ℓ ≠ 0, we obtain evidence for a critical screening parameter, above which bound states cease to exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.