Abstract

The widely used botulinum neurotoxin A (BoNT/A) blocks neurotransmission via cleavage of the synaptic protein SNAP-25 (synaptosomal-associated protein of 25 kDa). Recent evidence demonstrating long-distance propagation of SNAP-25 proteolysis has challenged the idea that BoNT/A remains localized to the injection site. However, the extent to which distant neuronal networks are impacted by BoNT/A retrograde trafficking remains unknown. Importantly, no studies have addressed whether SNAP-25 cleavage translates into structural and functional changes in distant intoxicated synapses. Here we show that the BoNT/A injections into the adult rat optic tectum result in SNAP-25 cleavage in retinal neurons two synapses away from the injection site, such as rod bipolar cells and photoreceptors. Retinal endings displaying cleaved SNAP-25 were enlarged and contained an abnormally high number of synaptic vesicles, indicating impaired exocytosis. Tectal injection of BoNT/A in rat pups resulted in appearance of truncated-SNAP-25 in cholinergic amacrine cells. Functional imaging with calcium indicators showed a clear reduction in cholinergic-driven wave activity, demonstrating impairments in neurotransmission. These data provide the first evidence for functional effects of the retrograde trafficking of BoNT/A, and open the possibility of using BoNT/A fragments as drug delivery vehicles targeting the central nervous system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call