Abstract

Anthracene- and pyrene-based twisted porous graphene (AN-Pyre-PG) with an ordered pore structure has been synthesized through bottom-up solution phase synthesis from a conjugated microporous polymer (AN-Pyre-CMP) via a heterogeneous Scholl cyclization reaction. The regular-ordered pores embedded within the graphene structures were analyzed through a Raman spectrum, different morphological analyses, and theoretical studies. A significant change in surface area from AN-Pyre-CMP to AN-Pyre-PG was observed, from 143 to 640 m2/g, respectively. Surface area-driven capacitive properties were also observed. Twisted-structure and ordered porous graphene shows better specific capacitance compared to CMP. AN-Pyre-PG shows a specific capacitance of 629 F g-1 at 1 A g-1, with 91% retention of capacitance after 3000 charge-discharge cycles, whereas AN-Pyre-CMP shows a maximum specific capacitance of 200 F g-1 was observed at 2 A g-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call