Abstract

AbstractThe dynamic pressure distribution on the bottom of a wave flume, due to the interaction of water waves with a submerged structure, is investigated experimentally and analytically, for both first- and second-order gravity waves of finite amplitude. The dynamic pressure excess is found to be very important, even for incoming waves propagating in deep water conditions. In this depth condition, a high pressure zone, thirty times larger than the dynamic pressure excess expected in the absence of the obstacle, is found in its vicinity. On the other hand, a low pressure zone is observed in the vicinity of the submerged obstacle for incoming waves propagating in smaller depth conditions. In any case, pressure gradients remain important. The second-order disturbance is found to be larger than first order in deep water conditions, for some specific conditions and locations. This result is interpreted in terms of nonlinear coupling of first-order components, including local modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.