Abstract
To investigate the effect of group gliding formation on the hydrodynamic performance of manta rays, numerical simulations were used to investigate the drag, the lift and pressure distribution of multiple manta rays in tandem, triangular and diamond-shaped arrangements. The simulation results show that the leader manta ray at the head of the group always suffers the least drag, and in most cases, the companion manta ray at the tail of the group suffers the most drag. The pressure distribution in the flow field shows that the drag reduction effect mainly comes from the distribution of high pressure and low pressure zones among the individual rays in the cluster, the high pressure zone is beneficial to the manta rays at the front of the group, and under certain circumstances, the presence of low pressure zone generates forward suction to reduce the drag of the manta rays at the end of the group. It is found that when manta rays glide in "two in front and one at the back", four-body diamond, six-body tandem and six-body diamond arrangement, the average drag of the system can be reduced, which provides theoretical guidance for the formation of bionic vehicle groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.