Abstract
Previously, we have shown that the ATPase-dependent motion of cilia in bovine bronchial epithelial cells (BBEC) can be regulated through the cyclic nucleotides, cAMP via the cAMP-dependent protein kinase (PKA) and cGMP via the cGMP-dependent protein kinase (PKG). Both cyclic nucleotides cause an increase in cilia beat frequency (CBF). We hypothesized that cAMP and cGMP may act directly at the level of the ciliary axoneme in BBEC. To examine this, we employed a novel cell-free system utilizing detergent-extracted axonemes. Axoneme movement was whole-field analyzed digitally with the Sisson-Ammons video analysis system. A suspension of extracted axonemes remains motionless until the addition of 1 mM ATP that establishes a baseline CBF similar to that seen when analyzing intact ciliated BBEC. Adding 10 microM cAMP or 10 microM cGMP increases CBF beyond the established ATP baseline. However, the cyclic nucleotides did not stimulate CBF in the absence of ATP. Therefore, the combination of cAMP and cGMP augments ATP-driven CBF increases at the level of isolated axoneme.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have