Abstract
Bradykinin (BK) is a potent modulator of biological processes in the retina, and retinal pigment epithelial cells (RPE) and the regulation of glutamate are believed to be important in the pathogenesis of diabetic retinopathy. However, the mechanism by which BK regulates glutamate uptake in RPE cells in diabetic retinopathy is unknown. Here, we examined the involvement of BK receptors in high glucose-induced dysfunction of glutamate uptake in human ARPE cells. High glucose stimulated glutamate uptake and the expression of excitatory amino acid transporter-4 (EAAT4) mRNA, and these were blocked by treatment with small interfering RNA (siRNA) for BK1 receptor (B1R) and BK2 receptor (B2R), but not scrambled siRNA, supporting an involvement of B1R and B2R in this process. High glucose-stimulated glutamate uptake was also blocked by the B1R antagonist [des-Arg(10)]-HOE 140 and the B2R antagonist HOE 140. High glucose increased B1R and B2R mRNA and protein expression in a time-dependent manner, increased B1R and B2R translocation from the cytosol to the nucleus, and stimulated kininogen, kallikrein, and kininase I mRNA expression. We examined whether BK receptors were involved in high glucose-induced signaling pathways. High glucose stimulated arachidonic acid release, cytosolic phospholipase A(2) and cyclooxygenase-2 proteins, nuclear factor-kappaB activation, and inhibitor-kappaB activation; these events were blocked by treatment with B1R and B2R siRNAs, but not scrambled siRNA. In addition, high glucose-induced stimulation of glutamate uptake was blocked by the cyclooxygenase-2 inhibitors arachidonyl trifluoromethyl ketone, mepacrine, 5-bromo-2-(4-fluorophenyl)-3-[4-(methyl-sulfonyl)phenyl]-thiophene, and N-[2-cyclohexyloxy-4-nitrophenyl] methane-sulfonamide, and by the nuclear factor-kappaB inhibitors pyrrolidine dithiocarbamate and SN-50.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.