Abstract
It has been reported that glyphosate, one of the most common herbicides used in agriculture, impairs locomotion and cognition. Glyphosate has a variable half-life in soil up to biotic and/or abiotic factors transform the molecule in metabolites such as the aminomethylphosphonic acid (AMPA) that has a longer half-life. In this study, female Sprague Dawley rats were acutely exposed to different doses of glyphosate or AMPA (i.e. 10, 56 or 100 mg/kg) and, subsequently, the acetylcholinesterase (AChE) activity was measured in the hippocampus, prefrontal cortex (PFC) and the gastrocnemius muscle. Both glyphosate and AMPA produced a similar decrease in the AChE activity in all the tissues tested. These results suggest that interference with normal cholinergic neurotransmission may be one of the mechanisms involved in glyphosate-induced motor alterations in rats. Moreover, our results highlight the biological importance of AMPA as a molecule with anticholinesterase action in brain and skeletal muscle. To our knowledge, this is the first report showing in vivo that AMPA, the major metabolite of glyphosate, behaves as an organophosphate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.