Abstract

Two concrete methods are presented for quantizing the time-dependent Hartree equations in terms of boson operators. The first is the well-known infinite boson expansion analogous to the Holstein-Primakoff representation of angular momentum operators. The second, a new development, consists of finite boson quadratic forms, and is analogous to the Schwinger representation of angular momenta. In each case, a physical boson subspace can easily be constructed within which the full fermion dynamics is exactly duplicated. It therefore follows that quantization of the time-dependent Hartree equations, including all degrees of freedom, retrieves the exact many-body problem. The discussion in this paper is limited to particle-hole excitations of an N-particle system. A generalization to one-nucleon transfer processes on the N-particle system is also given in terms of ideal odd nucleons, but this brings in infinite expansions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.