Abstract

Cooper pair (CP) binding with both zero and nonzero center-of-mass momenta (CMM) is studied with a set of renormalized equations assuming a short-ranged (attractive) pairwise interfermion interaction. Expanding the associated dispersion relation in 2D in powers of the CMM, in weak-to-moderate coupling a term linear in the CMM dominates the pair excitation energy, while the quadratic behavior usually assumed in Bose–Einstein (BE) condensation studies prevails for any coupling only in the limit of zero Fermi velocity when the Fermi sea disappears, i.e., in vacuum. In 3D this same behavior is observed numerically. The linear term, moreover, exhibits CP breakup beyond a threshold CMM value which vanishes with coupling. This makes all the excited (nonzero-CMM) BE levels with preformed CPs collapse into a single ground level so that a BCS condensate (where only zero CMM CPs are usually allowed) appears in zero coupling to be a special case in either 2D or 3D of the BE condensate of linear-dispersion-relation CPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call