Abstract
Chronic allograft dysfunction is a major cause of late graft failure after kidney transplantation. One of the histological changes is interstitial fibrosis, which is associated with epithelial-mesenchymal transition. Bortezomib has been reported to prevent the progression of fibrosis in organs. We used rat renal transplantation model and human kidney 2 cell line treated with tumor necrosis factor-α (TNF-α) to examine their response to bortezomib. To explore the mechanism behind it, we assessed the previously studied TNF-α/protein kinase B (Akt)/Smad ubiquitin regulatory factor 2 (Smurf2) signaling and performed RNA sequencing. Our results suggested that bortezomib could attenuate the TNF-α-induced epithelial-mesenchymal transition and renal allograft interstitial fibrosis in vitro and in vivo. In addition to blocking Akt/mammalian target of rapamycin (mTOR)/p70S6 kinase/Smurf2 signaling, bortezomib's effect on the epithelial-mesenchymal transition was associated with inhibition of nuclear factor kappa B (NF-κB) pathway by stabilizing inhibitor of NF-κB. The study highlighted the therapeutic potential of bortezomib on renal allograft interstitial fibrosis. Such an effect may result from inhibition of NF-κB/TNF-α/Akt/mTOR/p70S6 kinase/Smurf2 signaling via stabilizing protein of inhibitor of NF-κB.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have