Abstract

The working principle of the Boron Neutron Capture Therapy (BNCT) is the selective delivery of a greater amount of boron to the tumor cells than to the healthy ones, followed by the neutron irradiation that will induce the emission of α-particles and recoil 7Li nuclei through the 10B(n,α)7Li reaction. The objective of this work is to present a setup composed of a boron thin film coupled with CR-39. Alpha and 7Li particle coming from the boron films are used to quantify neutron boron reaction and are detected by CR-39. The nuclei compounding of this detector, H, C and O, will undergo fast neutrons reactions, which will be detected in the CR-39 itself. In this way, the 10B(n,α)7Li reaction and the contribution of fast neutrons to the flux can be determined at the same time. These measurements are essential for treatment planning as well as for studies of the biodistribution of 10B-carrier drugs and tissue microdosimetry. The boron films were deposited on stainless steel substrates through the sputtering technique and irradiated with thermal neutrons at the reactor IEA-R1 located at IPEN, São Paulo/SP, Brazil. Here we show the first results on the characterization of these thin films and calibration of the proposed setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.