Abstract

The desirability of the high nonlinear response of two-dimensional (2D) materials for electronics and optoelectronic devices drove us to investigate the nonlinear optical (NLO) behavior of alkali metal atom (AA) doped lithiated boron-containing hexahydroxy-triphenylene (LiBHHTP). In this context, the geometric, electronic, optical, and NLO properties are investigated. The doped AA atoms including Li, Na, and K preferably interact via the oxygen atoms of the LiBHHTP surface. The stability of the doped complexes is revealed by the interaction energies (Eint), which are −22.90, −16.10, and −16.52 kcal/mol for Li@LiBHHTP, Na@LiBHHTP, and K@LiBHHTP complexes, respectively. The alterations in the electronic behavior of LiBHHTP are observed upon doping with alkali atoms via Frontier Molecular Orbital (FMO), Natural Bond Orbital (NBO), and the Density of State (DOS) analyses. The FMO analysis reveals that these complexes are electride in nature with absorption transparency in the UV–Vis range. Finally, the NLO behavior of designed complexes is evaluated through static and dynamic hyperpolarizabilities. Among reported complexes, K@LiBHHTP exhibits significantly large static hyperpolarizability (βₒ), 2.24 × 105 au. The dynamic NLO response of doped LiBHHTP complexes is also high, where the values are ranged in between 3.67 × 105 and 6.04 × 108 au at 1064 nm. This article not only highlights the effects of alkali atom doping on the NLO behavior of materials but also presents the first Lithiated boron-containing triphenylene as a next-generation optoelectronic material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.