Abstract

In this study, the nonlinear optical (NLO) properties of pristine phosphorene and superalkali (Li3O) doped phosphorene are estimated through the density functional theory (DFT) method to investigate the optical properties. The geometries of complexes have been optimized using the B3LYP/6-31G (d, p) level of theory. The effects of doping on phosphorene have been thoroughly explained by vertical ionization energy (VIE), interaction energies (Eint), and natural bond orbitals (NBO), Moreover, the density of states (DOS), electron density difference map (EDDM) analysis, the frontier molecular orbitals (FMO) plots are also given out to find more physical divination into the electronic communication and structure property relationship. The doping of superalkali conclusively has reduced the HOMO-LUMO energy gap of M1 3.28 eV–1.25 eV for M2 making it the n-type semiconductor. The higher values of Eint,Efm and VIE obtained for M2 has indicated that this complex has higher stability and stronger interaction between superalkalis and phosphorene. More interestingly, there has been a gradual increase in the first static hyperpolarizability (βstatic) values for M1, M2 and M3 are 115.75 au, 4118.6 au, and 659.30 au respectively. The Static second hyperpolarizability (γstatic) of the doped complexes has also been calculated from which the M2 has the highest value of 1382.5 ҳ 103 au. The TD-DFT exploration has exhibited that the doped molecules are adequately transparent in the UV region. Some selected systems are also compared with the p-NA reference molecule which is a familiar external reference molecule for NLO applications. From UV absorption analysis, it can be found that these doped complexes of phosphorene may be contemplated as a new applicant for intense ultraviolet NLO materials. Computational studies have revealed the stability of M2 and M3 making them feasible as NLO materials in optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call