Abstract

The effect of boron doping on the position of the oxidation-induced stacking-fault ring (OSF ring) during Czochralski (CZ) crystal growth is described using a comprehensive model for point defect dynamics including the role of boron. The important interactions between boron atoms and intrinsic point defects are selected on the basis of tight-binding estimates for the energies of formation for boron-point defect structures. Intrinsic point defect properties used are taken from a parameterized model of point defect dynamics for predicting OSF-ring dynamics. Entropies of formation for boron-point defect species are obtained by fitting the predictions of the model to experimental data for OSF-ring dynamics. The model successfully predicts OSF-ring dynamics for a variety of doping and growth conditions. The effect of boron on the OSF ring is caused by the retardation of point defect recombination at temperatures near the melting point caused by dynamic storage of self-interstitials in complexes with boron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.