Abstract
Tourmaline rocks of previously unclear genesis and spatially associated with W- (Cu)-bearing calc-silicate rocks occur in Palaeoproterozoic supracrustal and felsic intrusive rocks in the Bonya Hills in the eastern Arunta Inlier, central Australia. Tourmalinisation of metapelitic host rocks postdates the peak of regional low-pressure metamorphism (M1/D1, ~500 °C, ~0.2 GPa), and occurred synkinematically between the two main deformation events D1 and D2, coeval with emplacement of Late Strangways (~1.73 Ga) tourmaline-bearing leucogranites and pegmatites. Tourmaline is classified as schorl to dravite in tourmaline–quartz rocks and surrounding tourmaline-rich alteration zones, and as Fe-rich schorl to foitite in the leucogranites. Boron metasomatism resulted in systematic depletion of K, Li, Rb, Cs, Mn and enrichment of B, and in some samples of Na and Ca, in the tourmaline rocks compared to unaltered metasedimentary host rocks. Whole-rock REE concentrations and patterns of unaltered schist, tourmalinised schist and tourmaline–quartz veins—the latter were the zones of influx of the boron-rich hydrothermal fluid—are comparable to those of post-Archaean shales. Thus, the whole-rock REE patterns of these rocks are mostly controlled by the metapelitic precursor. In contrast, REE concentrations of leucogranitic rocks are low (≤10 times chondritic), and their flat REE patterns with pronounced negative Eu anomalies are typical for fractionated granitic melts coexisting with a fluid phase. REE patterns for tourmalines separated from metapelite-hosted tourmaline–quartz veins and tourmaline-bearing granites are very different from one another but each tourmaline pattern mirrors the REE distribution of its immediate host rock. Tourmalines occurring in tourmaline–quartz veins within tourmalinised metasediments have LREE-enriched (LaN/YbN=6.3–55), shale-like patterns with higher ΣREE (54–108 ppm). In contrast, those formed in evolved leucogranites exhibit flat REE patterns (LaN/YbN=1.0–5.6) with pronounced negative Eu anomalies and are lower in ΣREE (5.6–30 ppm). We therefore conclude that REE concentrations and patterns of tourmaline from the different tourmaline rocks studied are controlled by the host rock and not by the hydrothermal fluid causing boron metasomatism. From the similarity of the REE pattern of separated tourmaline with the host rock, we further conclude that incorporation of REEs in tourmaline is not intrinsically controlled (i.e. by crystal chemical factors). Tourmaline does not preferentially fractionate specific REEs or groups of REEs during crystallisation from evolved boron- and fluid-rich granitic melts or during alteration of clastic metasediments by boron-rich magmatic-hydrothermal fluids.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have