Abstract
Borosilicate glass films were made by the sol-gel method from tetraethoxysilane and trimethylborate precursors. The precursor or glass composition at each stage of processing was analyzed to determine the sources of boron loss. The films were heated in a furnace and with a laser to compare boron volatilization by the two heating methods. The films were characterized by infrared spectroscopy, ellipsometry, induction-charged plasma spectroscopy, and Auger microscopy. The highest losses of boron occurred during coating and low temperature (<500 °C) furnace firing. Films with the highest boron concentrations were made by dip coating and rapid firing, either with a laser or by placing them into a hot furnace. Infrared spectroscopy revealed Si–O–B bonds, indicating incorporation of boron into the borosilicate glass structure for laser- and furnace-fired films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.