Abstract

Boron removal from lithium-rich brine was systematically investigated by solvent extraction using 2,2,4-trimethyl-1,3-pentanediol (TMPD) dissolved in 2-ethylhexanol and sulfonated kerosene. The extraction parameters were determined, including the concentration of mixed alcohols, lithium and solvents loss. During the extraction, a single TMPD molecule reacted with a single boric acid molecule to form a complex with two C–O–B ester bonds. The mechanism was also verified using density functional theory (DFT). The overall extraction efficiency reached 99.95% by a two-stage countercurrent extraction. NaOH (0.2 mol/L) with an O/A phase ratio of 1:2 was used to strip the loaded organic phase with 99.99% stripping efficiency. The feasible industrial application of this boron extraction method was validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.