Abstract

Boron-doped amorphous carbon (a-C) films have been investigated as a hardmask material for improving semiconductor integration, deposited using direct current (DC) magnetron sputtering with varying boron concentrations. Increased boron doping concentration in a-C led to a higher etch resistance but also resulted in the gradation of etch resistivity in the depth direction of the film, as confirmed by a continuous dry etching process. Scanning transmission electron microscopy electron energy loss spectroscopy showed an increase in the sp3 ratio of the film owing to boron doping as well as gradation in the B K edge region of a film doped with a high concentration of boron. This is because the high reactivity between boron and oxygen results in the reaction of residual oxygen in the chamber with boron. Time-of-flight secondary ion mass spectrometry was used to evaluate the penetration resistance to fluorine ions in the dielectric etchant. The results confirmed that B-O bonding resulted in relatively low fluorine resistance. Boron bonded with carbon can significantly improve the dry etch performance; however, bonding with oxygen needs to be effectively controlled to realize desirable film properties. Overall, this study demonstrates the potential of boron-doped a-C films as a hardmask material for the semiconductor industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call