Abstract
Aluminum matrix composites (AMCs) demonstrating a good combination of properties that are hard to acquire by a monolithic aluminum material. Since the last few decades, investigators have shown their keen interest to advance these materials for complex applications. Homogeneous reinforcement distribution, defect-free microstructure, and improved resultant properties depends on the fabrication method along with matrix and reinforcement materials and size. Two-step melt stirring technique and K2TiF6 flux enhanced the wettability and improve the particle distribution of boron carbide (B4C) in AMCs. The mechanical properties of the AMCs were enriched by either extrusion process or thermal treatment. Hybrid composites exhibited better characteristics than mono composites. Surface composites manufactured by incorporation of reinforcement in the surface layer; offer good surface properties without losing toughness and ductility. The B4C-Al interfacial reactions produce different precipitates in AMCs and damaged the composite's age-hardening ability. B4C reinforced friction stir processed surface composites exhibits refined structure and better properties compared to the aluminum matrix. The strength, hardness, and wear resistance of AMCs increased with rising fraction and reducing the size of B4C up to a certain level. Wear rate increases with rising applied load, sliding time and speed. A review of effect of B4C reinforcement on different properties of mono and hybrid AMCs with summarized results attained and concluded by different investigators is presented in this paper to help researchers in the field. At the end of this paper a position given to conclusions and future directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.