Abstract
Many of the XYZ mesons discovered in the last decade can be identified as bound states in Born-Oppenheimer (B-O) potentials for a heavy quark and antiquark. They include quarkonium hybrids, which are bound states in excited flavor-singlet B-O potentials, and quarkonium tetraquarks, which are bound states in flavor-nonsinglet B-O potentials. We present simple parameterizations of the deepest flavor-singlet B-O potentials. We infer the deepest flavor-nonsinglet B-O potentials from lattice QCD calculations of static adjoint mesons. Selection rules for hadronic transitions are used to identify XYZ mesons that are candidates for ground-state energy levels in the B-O potentials for charmonium hybrids and tetraquarks. The energies of the lowest-energy charmonium hybrids are predicted by using the results of lattice QCD calculations to calculate the energy splittings between the ground states of different B-O potentials and using the Schroedinger equation to determine the splittings between energy levels within a B-O potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.