Abstract

Borneol, a natural product in the Asteraceae family, is widely used as an upper ushering drug for various brain diseases in many Chinese herbal formulae. The blood-brain barrier (BBB) plays an essential role in maintaining a stable homeostatic environment, while BBB destruction and the increasing BBB permeability are common pathological processes in many serious central nervous system (CNS) diseases, which is especially an essential pathological basis of cerebral ischemic injury. Here, we aimed to conduct a systematic review to assess preclinical evidence of borneol for experimental ischemic stroke as well as investigate in the possible neuroprotective mechanisms, which mainly focused on regulating the permeability of BBB. Seven databases were searched from their inception to July 2018. The studies of borneol for ischemic stroke in animal models were included. RevMan 5.3 was applied for data analysis. Fifteen studies investigated the effects of borneol in experimental ischemic stroke involving 308 animals were ultimately identified. The present study showed that the administration of borneol exerted a significant decrease of BBB permeability during cerebral ischemic injury according to brain Evans blue content and brain water content compared with controls (P < 0.01). In addition, borneol could improve neurological function scores (NFS) and cerebral infarction area. Thus, borneol may be a promising neuroprotective agent for cerebral ischemic injury, largely through alleviating the BBB disruption, reducing oxidative reactions, inhibiting the occurrence of inflammation, inhibiting apoptosis, and improving the activity of lactate dehydrogenase (LDH) as well as P-glycoprotein (P-GP) and NO signaling pathway.

Highlights

  • The blood-brain barrier (BBB) is an anatomical and biochemical barrier, consisting of endothelial cells, a basal lamina, and astrocytic end feet [1]

  • The BBB integrity is of great significance for brain homeostasis, while the dysfunction of BBB can lead to complications of neurological diseases, such as stroke, chronic neurodegenerative disorders, neuroinflammatory disorders, and brain tumor [1,2,3]

  • Exclusion criteria were as follows: (1) the study was a case report, clinical trial, review, abstract, comment, editorial, or in vitro study; (2) the targeting disease was not ischemic stroke; (3) the intervention was a combination of borneol and another agent with potential effect on ischemic stroke; (4) the effect of borneol was not tested on BBB permeability; and (5) lack of the control group

Read more

Summary

Introduction

The blood-brain barrier (BBB) is an anatomical and biochemical barrier, consisting of endothelial cells, a basal lamina, and astrocytic end feet [1]. A disruption of BBB integrity, characterized by increased permeability, is associated with several neurological pathologies, such as ischemia/hypoxia, hemorrhage, multiple sclerosis, and amyotrophic lateral sclerosis [4]. During the cerebral ischemia/reperfusion injury, changes in BBB structures result in the increase of its permeability and the loss of its protective function, which may deteriorate the tissue injury [5, 6]. The disruption of BBB is an essential pathological basis of cerebral ischemic injury. The long-lasting BBB disruption can directly contribute to cerebral edema and the influx of immune cell and inflammatory materials, resulting in the

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call