Abstract

Itraconazole (ITZ) can be used for the treatment of cryptococcus neoformans meningitis and aspergillus brain abscess. While, the inherent hydrophobicity of ITZ and the existence of blood brain barrier (BBB) limit its applications as a central nervous system drug. In this study, a novel brain targeting drug delivery system based on bovine serum albumin (BSA) was constructed for enhancing ITZ distribution in brain. Firstly, ITZ was loaded into BSA nanoparticles (ITZ-NPs) with 11.6% of drug loading. Subsequently, the nanoparticles were modified with borneol (BO) and polyethylene glycol (PEG) (PEG/BO-ITZ-NPs). The resulting nanoparticles retained their nanosize (186.3nm), uniform and spherical morphology, and negative surface charge (-21.03mV). Cell uptake studies showed that compared with ITZ-NPs, PEG/BO-ITZ-NPs had significantly increased uptake in bEnd.3 cells, and the increase in BO concentration was beneficial for the cellular uptake of NPs. Moreover, PEG/BO-ITZ-NPs displayed an approximately 3.5-fold higher area under the curve in rats and about 2-fold higher brain distribution in mice than that of Sporanox®, i.e. ITZ solubilized by hydroxylpropyl-β-cyclodetrin, after i.v. administration. In a word, BO and PEG dual modified BSA nanoparticles may potentially serve as an ITZ vehicle for brain targeting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.