Abstract
Borel Cayley graphs have been shown to be an efficient candidate topology in interconnection networks due to their small diameter, short path length, and low degree. In this paper, we propose topology control algorithms based on Borel Cayley graphs. In particular, we propose two methods to assign node IDs of Borel Cayley graphs as logical topologies in wireless sensor networks. The first one aims at minimizing communication distance between nodes, while the entire graph is imposed as a logical topology; while the second one aims at maximizing the number of edges of the graph to be used, while the network nodes are constrained with a finite radio transmission range. In the latter case, due to the finite transmission range, the resultant topology is an “incomplete” version of the original BCG. In both cases, we apply our algorithms in consensus protocol and compare its performance with that of the random node ID assignment and other existing topology control algorithms. Our simulation indicates that the proposed ID assignments have better performance when consensus protocols are used as a benchmark application.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have