Abstract

This paper discusses borehole propagation modeling in the drilling industry. A three-dimensional (3D) borehole propagation model is proposed that tracks the wellbore/stabilizer contacts caused by an overgaged borehole. The resulting model represents a nonlinear delayed system that can be efficiently used to simulate borehole propagation. Simulations are provided to show the model capabilities to capture various drilling scenarios. The predictions are also validated with actual field-test data from mud-motor and rotary-steerable operations. The proposed model can be used to (a) design mud motors and rotary steerable systems (RSSs) and evaluate their steering performance, (b) design and test surface and downhole controllers for wellplan tracking, and (c) provide predictive recommendations to help directional driller operators make steering decisions while drilling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.