Abstract
We consider the problem of estimating the quantiles of a distribution function in a fixed design regression model in which the observations are subject to random right censoring. The quantile estimator is defined via a conditional Kaplan-Meier type estimator for the distribution at a given design point. We establish an a.s. asymptotic representation for this quantile estimator, from which we obtain its asymptotic normality. Because a complicated estimation procedure is necessary for estimating the asymptotic bias and variance, we use a resampling procedure, which provides us, via an asymptotic representation for the bootstrapped estimator, with an alternative for the normal approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.