Abstract

Robotic simulators are often used to speed up the Evolutionary Robotics (ER) process. Most simulation approaches are based on physics modelling. However, physics-based simulators can become complex to develop and require prior knowledge of the robotic system. Robotics simulators can be constructed using Machine Learning techniques, such as Artificial Neural Networks (ANNs). ANN-based simulator development usually requires a lengthy behavioural data collection period before the simulator can be trained and used to evaluate controllers during the ER process. The Bootstrapped Neuro-Simulation (BNS) approach can be used to simultaneously collect behavioural data, train an ANN-based simulator and evolve controllers for a particular robotic problem. This paper investigates proposed improvements to the BNS approach and demonstrates the viability of the approach by optimising gait controllers for a Hexapod and Snake robot platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.