Abstract

Evolutionary Robotics (ER) strives for the automatic creation of robotic controllers and morphologies. The ER process is normally performed in simulation in order to reduce the time required and robot wear. Simulator development is a time consuming process which requires expert knowledge and must traditionally be completed before the ER process can commence. Traditional simulators have limited accuracy, can be computationally expensive and typically do not account for minor operational differences between physical robots.This research proposes the automatic creation of simulators concurrently with the normal ER process. The simulator is derived from an Artificial Neural Network (ANN) to remove the need for formulating an analytical model for the robot. The ANN simulator is improved concurrently with the ER process through real-world controller evaluations which continuously generate behavioural data. Simultaneously, the ER process is informed by the improving simulator to evolve better controllers which are periodically evaluated in the real-world. Hence, the concurrent processes provide further targeted behavioural data for simulator improvement.The concurrent and real-time creation of both controllers and ANN-based simulators is successfully demonstrated for a differentially-steered mobile robot. Various parameter settings in the proposed algorithm are investigated to determine factors pertinent to the success of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.