Abstract
AbstractFollowing Bradonjić and Saniee, we study a model of bootstrap percolation on the Gilbert random geometric graph on the 2-dimensional torus. In this model, the expected number of vertices of the graph is n, and the expected degree of a vertex is $a\log n$ for some fixed $a>1$ . Each vertex is added with probability p to a set $A_0$ of initially infected vertices. Vertices subsequently become infected if they have at least $ \theta a \log n $ infected neighbours. Here $p, \theta \in [0,1]$ are taken to be fixed constants.We show that if $\theta < (1+p)/2$ , then a sufficiently large local outbreak leads with high probability to the infection spreading globally, with all but o(n) vertices eventually becoming infected. On the other hand, for $ \theta > (1+p)/2$ , even if one adversarially infects every vertex inside a ball of radius $O(\sqrt{\log n} )$ , with high probability the infection will spread to only o(n) vertices beyond those that were initially infected.In addition we give some bounds on the $(a, p, \theta)$ regions ensuring the emergence of large local outbreaks or the existence of islands of vertices that never become infected. We also give a complete picture of the (surprisingly complex) behaviour of the analogous 1-dimensional bootstrap percolation model on the circle. Finally we raise a number of problems, and in particular make a conjecture on an ‘almost no percolation or almost full percolation’ dichotomy which may be of independent interest.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.