Abstract
The kilo-Hertz gravitational waves radiated by the neutron star merger remnants carry rich information about the physics of high-density nuclear matter states, and many important astrophysical phenomena such as gamma-ray bursts and black hole formation. Current laser interferometer gravitational wave detectors, such as LIGO, VIRGO, and KAGRA have limited signal response at the kilo-Hertz band, thereby unable to capture these important physical phenomena. This work proposes an alternative protocol for boosting the sensitivity of the gravitational wave detectors at high frequency by implementing an optomechanical quantum amplifier. With the auxiliary quantum amplifier, this design has the feature of Parity-Time (PT) symmetry so that the detection band will be significantly broadened within the kilo-Hertz range. In this work, we carefully analyze the quantum-noise-limited sensitivity and the dynamical stability of this design. Based on our protocol, our result shows that the quantum-noise-limited sensitivity will be improved by one order of magnitude around 3kHz, which indicates the potential of our design for a future search of neutron star merger signals.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.