Abstract

This work reports on the use of protein engineering as a versatile tool to rationally design metal-binding proteins for the synthesis of highly photoluminescent protein-stabilized gold nanoclusters (Prot-AuNCs). The use of a single repeat protein scaffold allowed the incorporation of a set of designed metal-binding sites to understand the effect of the metal-coordinating residues and the protein environment on the photoluminescent (PL) properties of gold nanoclusters (AuNCs). The resulting Prot-AuNCs, synthesized by two sustainable procedures, showed size-tunable color emission and outstanding PL properties. In a second stage, tryptophan (Trp) residues were introduced at specific positions to provide an electron-rich protein environment and favor energy transfer from Trps to AuNCs. This modification resulted in improved PL properties relevant for future applications in sensing, biological labeling, catalysis, and optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call