Abstract
Proteins have been used as templates to stabilize fluorescent metal nanoclusters thus obtaining stable fluorescent structures, and their fluorescent properties being modulated by the type of protein employed. Designed consensus tetratricopeptide repeat (CTPR) proteins are suited candidates as templates for the stabilization of metal nanoclusters due to their modular structural and functional properties. Here, we have studied the ability of CTPR proteins to stabilize fluorescent gold nanoclusters giving rise to designed functional hybrid nanostructures. First, we have investigated the influence of the number of CTPR units, as well as the presence of cysteine residues in the CTPR protein, on the fluorescent properties of the protein-stabilized gold nanoclusters. Synthetic protocols to retain the protein structure and function have been developed, since the structural and functional integrity of the protein template is critical for further applications. Finally, as a proof-of-concept, a CTPR module with specific binding capabilities has been used to stabilize gold nanoclusters with positive results. Remarkably, the protein-stabilized gold nanocluster obtained combines both the fluorescence properties of the nanoclusters and the functional properties of the protein. The fluorescence changes in nanoclusters fluorescence have been successfully used as a sensor to detect when the specific ligand was recognized by the CTPR module.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.