Abstract

Low-crystalline or amorphous molybdenum sulfides (MoSx), bearing abundant unsaturated active sites, have been identified as efficient catalysts for electrocatalytic and photocatalytic H2 evolution reactions, however, their intrinsic activity is still low and need to be further improved for large-scale applications. In this paper, we report that low-crystalline MoSx doped with Co (Co-MoSx) as efficient cocatalysts could be loaded on CdS nanoparticles through a facile and controllable photochemical reduction method and showed high performances in catalyzing H2 evolution under visible light irradiation (≥420nm). The photochemical loading of Co-MoSx was accomplished by using an in-situ formed molecular complex precursor and photogenerated electrons on CdS as reductants under mild conditions. The optimized CdS/Co-MoSx (Co:Mo=1:4, 2mol% loading) photocatalyst exhibited a catalytic H2 evolution rate of 535μmolh−1, which is 1.8 times higher than that of CdS/MoSx, and an apparent quantum efficiency (AQE) of 23.5% was achieved over CdS/Co-MoSx photocatalyst at 420nm. Co-MoSx catalyst also shows a long-term stability without noticeable activity degradation. Notably, Co-MoSx cocatalyst was found more efficient than that of noble metals in catalyzing photocatalytic H2 evolution on CdS. The formation of CoMoS phase, the enhanced electrocatalytic activity as well as reduced electron transfer resistance due to the doping effects of Co ions, account for the enhanced catalytic activity of this Co-MoSx cocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.