Abstract

CdS/MoS2 heteronanostructure has been considered to be one of the most promising material systems for photocatalytic H2 evolution. However, its photocatalytic performance is severely restricted by the agglomeration of nanostructure and inferior electron transport. Herein, reduced graphene oxide coated montmorillonite (rGO/Mt) was constructed as a hydrophilic conductive catalyst carrier via reducing graphene oxide on montmorillonite. The heterostructures of CdS and MoS2 were assembled on rGO/Mt by hydrothermal process. The photocatalytic H2 evolution property of composites was examined under visible light, and the composites exhibit an efficient H2 evolution rate (1760 μmol h−1 with 100 mg of catalysts) owing to the synergistic effect of the carrier material. Hydrophilic montmorillonite inhibits agglomeration of nanostructures and enhances their dispersibility in the water, and meanwhile, conductive graphene facilitates electronic transmission. The design of a multicomponent carrier provides a novel path to enhance photocatalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.