Abstract
The dissolution of silicate minerals plays a crucial role in many natural geological processes. In order to better comprehend the reaction mechanisms and dissolution characteristics of montmorillonite in different acidic systems, the effects of interfacial reactions of montmorillonite with oxalic and sulfuric acid solutions at various pH levels on the ionic dissolution, crystal structure, and micro-morphology were studied, and the morphology of aluminum and saturation index of secondary mineral were simulated. It was shown that the dissolution amounts of Mg2+, Al3+ and Si4+ in montmorillonite structure decreased with the increase of pH value, which reflected the dependence of montmorillonite dissolution on the pH value of solution. The dissolution percentages of Mg2+, Al3+ and Si4+ after the reaction of montmorillonite with oxalic acid solution were greater than those in sulfuric acid solution, and the highest dissolution rate of Al3+, indicated that both ligands and protons attacked the surface sites of montmorillonite and accelerated the dissolution of ions. Moreover, oxalate ligands exerted specific binding effects on Al3+ ions. While reacting with oxalate and sulfate, the tetrahedral, octahedral and interlayer cations of montmorillonite exhibited the non-stoichiometric and inconsistent dissolution. The oxalate ligands have a strong complexation effect on Al3+, so that Al3+ in oxalate solution exists in the form of aluminum oxalate complex, which reduces the effective concentration of Al3+ in solution and promotes the dissolution of Al3+ in montmorillonite structure. The Mg2+ ions settled at octahedral substitution sites possessed weak stability, while those from the interlayer featured strong interlayer interchangeability, demonstrating the dissolution percentage up to 10.85 % and 8.62 % even in oxalic and sulfuric acid solutions at pH of 6.5. All secondary mineral phases in the solution were undersaturated, making the montmorillonite dissolution difficult to balance. Montmorillonite has a high cation exchange capacity, which makes it have a strong buffer capacity to exogenous acids. This study helps to explain the dissolution process of montmorillonite in inorganic and organic acid solutions at different pH value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.