Abstract

Semiconductor photocatalytic technology is one of the potential ways to eliminate antibiotic pollution in the water environment. In this study, NiMoO4/g-C3N4 (NMCN) heterojunction photocatalyst was fabricated via an ultrasonic-assisted hydrothermal route. The synthesized monomer and heterojunction photocatalyst samples were characterized in terms of crystal structure, elementary composition, morphology, optical properties, and so on. Upon visible light irradiation, the prepared 30NMCN sample displayed prominent photocatalytic degradation efficiency (89%) of tetracycline within 3 h, which was 1.48 and 2.02 times of NiMoO4 and g-C3N4, respectively. In addition, the 30NMCN sample showed outstanding recyclability after multiple tetracycline photocatalytic degradation processes. Ultimately, the mechanism of the enhanced tetracycline degradation performance over NMCN photocatalysts was elucidated. The meliorative photocatalytic performance was ascribed to the expansion of the light-harvesting range and the alteration of migration pathways of photogenerated charge carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.