Abstract

Layer-structured Bi2O2CO3/g-C3N4 heterojunction photocatalysts were successfully prepared via one-pot hydrothermal method for the first time, in which graphitic carbon nitride (g-C3N4) served as the self-sacrificial reagent to supply carbonate anions simultaneously. Our results showed that the in situ fabricated Bi2O2CO3/g-C3N4 heterojunction exhibited superior visible-light-driven photocatalytic activity for NO photocatalytic oxidation, which can be ascribed to the morphology and structure modulation during the sacrificial synthesis processes. Heterojunctions formation pathways underlying temperature- and time-dependent structure evolution were discussed in detail. The sample fabricated at 160°C for 12h (BOC-CN-160) showed high stability and durability, and the highest NO removal rate which is up to 34.8% under visible light irradiation. Results from photocurrent tests and electrochemical impedance spectroscopy (EIS) demonstrated that the BOC-CN-160 sample presents much more effective interface charge separation efficiency, which can contribute to its remarkably improved photocatalytic performance. Reactive radicals during the photocatalysis processes were identified by electron spin resonance (ESR) study. Combined with the quantification of reaction intermediates, the photocatalytic degradation mechanism of NO over Bi2O2CO3/g-C3N4 heterojunction photocatalyst was proposed. The novel approach developed in this study may be further extended to synthesize a series of novel and highly efficient g-C3N4-based carbonate heterojunction photocatalysts for visible light-harvesting and energy conversion applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.